News
New shape-adaptive device turns body motion into power source
Jun 23, 2016 | 11:00 / Interesting information
Read 5118 time (-s)

A combined team of researchers with members from several institutions in China and the Georgia Institute of Technology, has developed a flexible nanogenerator that harnesses the energy from moving body parts and uses it to run electronic devices. In their paper published in the journal Science Advances, the team describes their new device, how they made it bendable, and the ways they believe it might be used.

The first triboelectric nanogenerator (TENG) was developed at Georgian Tech back in 2012, and since that time teams across the world have been hard at work attempting to create consumer devices that will be both useful and inexpensive. If a team succeeds, we might soon see devices that are affixed to our skin or clothes, powered by nothing more than our movements. Such devices work by using the normal motion of the human body, such as a foot tapping, to cause two different types of material in the device to rub together, or more recently, when they are pressed together, so as to prevent erosion of material. Up till now, most such devices have been rigid. In this new effort, the researchers claim they have developed a flexible TENG that is also stretchable.

To make the new device, the team combined a liquid electrode with a rubber cover—they suggest the result is actually a new type of device, one they are calling Shape Adapting TENG (saTENG). They report that sample devices have been stretched up to 300% without any loss in performance. A device they built was used to capture the energy of a person sitting down and tapping their foot on the ground—it was enough to run 80 LED lights. To prove its adaptability, they also fashioned a device into a bracelet and harnessed enough power from simple arm movements to power another set of LEDs. They report both devices were very inexpensive to make—approximately 50 cents.

The team notes also that by using water as the material for the electrode, they have opened up a new area of research, because the water itself is moved due to the external motion, allowing for another source of mechanical energy that can be harvested. The team plans to next study the possibility of increasing power output by perhaps stringing multiple devices together and of using their technology as the basis for medical sensing devices or even prosthetics.

ictnews.az

 

JOURNALS
Useful links